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ON THE DISPLACEMENT BOUNDARY VALUE PROBLEM
OF SHALLOW SPHERICAL SHELLS*

F. Y. M. WanN

Department of Mathematics. Massachusetts Institute of Technology. Cambridge, Massachusetts

Abstract—By reformulating the displacement boundary conditions in terms of strain and curvature change
measures. the displacement boundary value problem of shaliow spherical shells becomes the static-geometric
analogue of the corresponding stress boundary value problem. Without another set of independent calculations,
the exact solution of the former and its asymptotic behavior are obtained directly from known results for the
latter by applications of the rules of static-geometric analogy. This new formulation also offers a new perspective
to a previous asymptotic solution of the displacement problem.

1. INTRODUCTION

THE asymptotic behavior of the exact solution of the linear elasto-static problem of a
complete shallow spherical cap subject to self-equilibrating edge loads was discussed
recently in [1]. For the stress boundary value problem, this asymptotic behavior was
studied in some detail to delineate the dependence of the interior and edge zone stress
state on the applied loads and to determine the applicability of the earlier direct asymptotic
solution of the same problem [2, 3]. A less compiete analysis of the displacement boundary
value problem was also included. The present note reformulates the displacement boundary
value problem to explore a duality between the stress and displacement boundary value
problem. By formulating the displacement boundary conditions in terms of strain and
curvature change measures. the displacement boundary value problem becomes the static
geometric analogue of the stress boundary value problem [4]. This complete duality makes
separate analysis of the two problems unnecessary. Without another set of independent
calculations, the exact solution of the displacement boundary value problem and its
asymptotic behavior can be obtained directly from the results for the stress boundary
value problem by applying the rules of static geometric analogy. Moreover, our alternate
formulation also offers a new perspective to the asymptotic solution obtained in [5].

The fact that there is a static geometric analogy between the two fundamental problems
of shell theory was known to Lur’e [6]. and a more general exposition of this idea was given
by Naghdi in [7] where other appropriate references can also be found. Our present analogy
differs from Lur’e’s in that the latter requires a reformulation of the stress boundary condi-
tions in terms of resultant forces and moments. Such an analogy does not enable us to make
use of the existing results for the stress boundary value problem. An analogy very similar
to that of the present work was discussed earlier by Chernykh [8]. However, the starting
point of Chernykh's work was the complex form of shell equations of Novozhilov [9]. The
derivation of these equations for ““‘complex forces™ requires a certain approximation in the
original shell equations in the case of a non-vanishing Poisson’s ratio. The present analogy
does not need this approximation even for non-shallow shells (see [10]).
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2. SOLUTION BY STATIC GEOMETRIC ANALOGY

As in [ 1], we consider solutions of Marguerre’s shallow shell equations which lead to
finite stresses and displacements at the apex of the shell in the form
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where D and 1/4 are the bending and stretching stiffness cf the shell. R is the radius of the
spherical middle surface and where 4,. B,, C,, and D, are constant of integration to be
determined by the boundary conditions at the edge r = a.* Terms associated with the
constants A4, and B, are the inextensional bending and membrane contributions respec-
tively. where terms associated with C, and D, are edge etfect contributions.
From (1) and (2). we have the following expressions for the strain and curvature change
measures:
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* See [1] for nomenclatures not defined herein. Note also the change of notation 1n regard to the rotations
¢, and &, and in regard to the constants of integration
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where the functions [ s are as defined in [ 1] while the g's are the g's of [1] with v, replaced
by —v,. With the additional analogy associating (D, — A4). these are the static geometric
analogues of the stress measures given by equations (2.5) of [1]). Within the framework of
Marguerre’s theory. B, can be interpreted as the normal component of the curvature
change vector associated with a constant f edge while J, 1s the static geometric analogue
of the KirchhofT effective transverse resultant R, = Q,+r~ 'M,4,.

The shell is subject to edge deformation at p = 1 so that

(u.w. ¢,) = (u,.w,. d,) cos né, r = r,sin nf (4)

where for shallow shell theory ¢, = —w, and where w,, u,. t, and ¢, are prescribed con-
stants and n > 2. While the conditions (4) were used in [1] for the determination of the
constants of integration. we will replace them here by the equivalent conditions
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and where o = a/R. in order to explore the static geometric analogy.
With the relevant strain and curvature change measures given by (3), the boundary
conditions (5) become
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Except for a slight change in notation. equanons (6) are formally the same as equations (3.2)

of [1] with —N,,. S,. R,. M, replaced by x,. 1,. d,. &,. and with the g's replaced by #'s.
We can therefore write down the solution of (6) without additional calculations
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where the X,’s and the A, are the X;'s and the A, of [1] with v, replaced by — v, and where
g, 1s as defined in [1].

3. INTERIOR MEMBRANE AND BENDING STRESSES

To examine the direct and bending stresses in the interior of the shell. we confine our-
selves to an isotropic and homogeneous medium for which v, = v, = v. 4 = | Eh and

D = Eh*/12(1 —v%), and consider as in [1] two representative quammes o4, and gk, defined
by
NG, ; oM, A
g = a’p, cos nl, —L,-— = g, COS ntl. {8}
h o,
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It follows from (7) that (with 4 = p/2)
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which gives a measure of the relative magnitude of the interior direct and bending stresses.
Equation (9) is formally the same as the corresponding equation for the stress boundary
value problem with the role of ¢}, and o4, interchanged and with the prescribed edge
stress resultants and couple replaced by the prescribed edge strain couples and resultant
according to the rules of the static geometric analogy. Observing these changes, a discussion
of the interior stress state for the displacement boundary value problem is formally the
same as that of the stress boundary value problem in [1]. We confine ourselves only to the
following observations.

From equation (3.2) of [1], we have the following asymptotic expansions for the X'
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hy?® (n—1){1+v) 1
B = l ) Tn—K
n 2n2(n2_1)\/[3(1_v2n{[ - 2“ +0(“2):'( n hn)
. 1 — ’ -+ -— !
nt [H_(n 1)(1+1)+0( }(a(sn)_nll[l_(n 1)(1+u)+0(_1:”(n£")}
aa 2u us

ad 2
= e J (1 o] I
© 203t = 1)Y[3(1 = 1Y) [|:1+0; (r,—n,,)+—w— HO(F) (ad, - ne,)

+‘£—_‘£1_ti>[1 +O(~1H(a5n+"8n’l~
2uaa \M J

If (11) is an accurate approximation of 4, and B, and if the prescribed edge displacements
are such that
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we have the following valid first approximation for A4, and B,,:
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It is remarkable that the quantities w, and ¢, which contribute to each edge strain measure
individually do not appear in the leading terms of the interior solution. Moreover, the
expressions for 4, and B, given by (13) are exactly those obtained in [5] by a direct asymp-
totic analysis of the same problem. Our analysis shows that the results of [5] are in fact
equivalent to the leading term of the asvmptotic expansion of the interior solution in powers
of 1/u. Whether such a leading term theory provides an accurate first approximation of the
exact interior solution depends of course on the satisfaction of (12) and on that (11) is an
accurate approximation of the exact solution.
Writing (12) in terms of the edge displacement quantities, we have

1+ Dy + v,) = 20w, < (n— D, +1,| 14
1M+ Diuy, +vp)— 20w, < (n—Dju,—1,).

The first condition of (14) can be simplified to |aw,/u| <€ (n— 1)ju,+t,. Note that ¢, does
not appear in (14). This is in agreement with the result of [1] which shows that the contri-
bution of the edge rotation is of the form aa¢,/(2u)*. Thus. even if (14) (or (12)) is satisfied.
(13) need not be an accurate first approximation of these constants. However, upon appro-
priate translation of the results for the stress boundary value problem, we have that if (13)
is not an accurate first approximation of the Interior stress state. then it is the edge zone
stress rather than the interior stress state which is associated with the dominant stress of
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the problem. In getting this last conclusion, we made use of the fact that
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and where the quantities Z,’s are the Z;’s of [1] with v replaced by —v.
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Aﬁcrpalcr——I'IyTeM UCTIPDABIICHHA [PAHUYHDBIX YCIOBHUHW 1A MEPEMCLICHHH B BbIPAXKCHHAX /1A nepeme-
LHEHUA 1 MEPAX UIMEHEHHA KPHBH3HLI, KpaeBas 3aJava 118 nepemelleHud nNoJIornx cd)epuqecxux o0bonoYex
ABJAACTCA COOTBETCTBYIOWAA CTATUKO-TEOMETPHYECKON AHAONMH K KpPaesBoit 3agade anA HANPRAMKEHUIR,
Tounoe pelIcHue HCpBOﬁ 3aaur 1 €€ aCUMOTOTHHYECKOEC MOBCOCHHE [MOAYHAIOTCHA HENnOCPeaCTBEHHO U3
H3BECTHBIX PEIYAbTATOB IPYrOid 341244, NyTEM IIPUMEHEHHUA 3AKOHOB CTaTKKOYCOMCTDH‘lCCKOﬁ AHANOIHH,
0e3 HeOOXOAHMOCTH KAKHX TO HE3ABUCHMBIX pacyeTos. JTa HOBas d)opMyfmpoaKa JA€T TAKXE MEPCHEKTUBY
K NPEeAblAYIUEMY ACHMIITOTHUYCCKOMY PELUECHUM 320a49H D18 11ePeMELUIeHUN.



